Sensitive and specific potassium nanosensors to detect epileptic seizures


a, Schematic showing the design of the K+ nanosensor. K+ indicators are incorporated inside the nanopores. The thin K+-specific filter membrane on the surface of the nanopores allows only K+ to be internalized. b-c, Chemical structure of the filter membrane. d-e, Schematic illustrations showing the hydration shells on potassium (K+ in red) and sodium ions (Na+ in purple) and sodium ions in deionized water. f-g, Schematic illustrations and calculated binding energy of the interactions between the filter membrane cavity and K+/Na+. Credit: IBS

Researchers at the Center for Nanoparticle Research, within the Institute for Basic Science (IBS, South Korea) in collaboration with collaborators at Zhejiang University, China, have reported a highly sensitive and specific nanosensor that can monitor dynamic changes of potassium ions in mice undergoing epileptic seizures, indicating their intensity and origin in the brain.




Find out the full story here